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Convex Interpolation by Splines of Arbitrary Degree 

By Holger Mettke 

Abstract. An algorithm is described for computing an interpolation spline of arbitrary but 
fixed degree which preserves the convexity of the given data set. Necessary and sufficient 
conditions for the solvability of the problem, some special cases and error estimations are 
given. 

1. Introduction. In some problems arising from science or engineering the solution 
of an interpolation problem with constraints is required. For example, if a convex 
data set is given then the interpolant should also be convex. Using standard 
techniques like polynomial or cubic spline interpolation the resulting interpolant is 
not convex in general (see [5]). 

In recent years convex interpolation by splines has been investigated in several 
publications (see [3]-[17]). Various possibilities were proposed to assure the convex- 
ity of an interpolation spline. They reach from additional conditions on the data set 
to additional knots of the interpolation spline. 

In this paper we consider convex interpolation by splines of arbitrary degree 
k > 3 with smoothness q, where 1 < q < [(k - 1)/2]. As is known, the solvability 
of such an interpolation problem is equivalent to that of a special system of linear 
inequalities. Necessary and sufficient conditions are derived such that this system 
has a solution, and an algorithm is described to find all solutions of the system of 
inequalities. Furthermore, a sufficient condition is given which always assures the 
solvability of the system and which is easy to test. In this case, a solution can be 
found even with a reduced algorithm. The sufficient condition just mentioned is 
interpreted in different ways. Specifically, for a strictly convex data set it is possible 
to give a lower bound for the degree k such that the interpolation problem is 
solvable. For the developed method no additional spline knots are needed. In the 
last section, the important question of error estimation is investigated. Under certain 
assumptions, error bounds are derived for continuous and continuously differentia- 
ble underlying functions. The assumptions are related to the solvability of the 
convex interpolation problem, and in one case to the ratio of contiguous step sizes of 
the grid. In the differentiable case, the order of approximation is better than in the 
continuous one. 

2. Definitions and Notation. Let 'r be an arbitrary but fixed partition of the 
interval [a, b], i.e., 

7T: a = On<x . < ( n > f) . 
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The maximal mesh length is abbreviated as 
h = max hi where hi = xi - xij. 1 < iv n 

Further, for given integers k, q with 0 < q < k - 1 we denote by S(k, q, 'rT) the 
space of all polynomial splines of degree k associated with 'IT with deficiency at most 
(k - q) at the knots. That is, s E S(k, q, 'ir) if and only if s E Cq a, b] and in each 
subinterval [xi 1, xi] s coincides with a polynomial of/degree k. 

Let fi (i = 0,1, .. ., n) be given real numbers. Then the data set {(xi, f1), 
i = 0,1,. . ., n} is said to be convex if and only if, with the abbreviation Ti = 

(f - fi -1)/hi, the inequalities 

T1 < T2 < < Tn -l < Tn 

are valid (see [14], [15]). The data set is called strictly convex if and only if the 
inequalities r1 < .2 * * * <, T-1 < T, hold. Our aim is to investigate the following 
interpolation problem (I). 

(I) For a given convex data set {(xi, fi), i = 0,1,.. ., n } find a spline s E S(k, q, 7r) 
satisfying the conditions 

(2.1) s(xi)= (i=O ,1, ..., n) 

and 

(2.2) s is convex on [a, b]. 
In this paper we restrict our attention to the case when k> 3 and 1 <q < [(k- 1)/2] 
where, as usual, [r] denotes the greatest integer not greater than r. 

In order to construct solutions of (I), some special fundamental polynomials are 
used. They are defined in the following manner (see [12] and for special cases [1], 
[13], [18]): Let ui (i = 1,2,..., n) be given integers such that 1 < ui < k and 
min < j n rj = q, where rj = min( uj - 1, k - uj +1 }. Then the functions 

p1, (t) = ak,", J |k-au1(l - C)u '-dl, 

0o,i(t) = 1 - )i(t), 

p2,i(t) = t* [1 - ak-lui f k-ui-(l - u) 
1 

dcj 

p3i(t) = akl,(u-1(1-t) * f _ui(l -y d 

(i= 1,2,... ,n), defined on [0,11 are the fundamental polynomials. Here, the ab- 
breviation a,, means 

(2.3) aV = (s) = [| Ad v(1 - 
{Y''dCj 

For the reader's convenience we recall some properties of these functions: 
(i) POJi* * I 9P3,i are polynomials of degree k. 
(ii) p1i: [0, 1] -- [0, 1], j = 0, 1, 2, 3. 
(iii) 4pj>i is determined by the following fundamental properties: 

q)j(", i() = 8P4 qZO ,+,)2,i(?) = ( = 0,1; v = 0, ... .,k - Ui), 

P.qJ,)2(1) = (-1)8 ,o( 0,1; v = 0,...,u1 - 1). 



CONVEX INTERPOLATION BY SPLINES OF ARBITRARY DEGREE 569 

Thus, the above polynomials are special Hermite interpolation polynomials. We 
define 

(2.4) pi(x) = fi- 1TPoi(t) + fiSl, i(t) + hi[mi-lp2,i(t) - MiT3,i(t) 

(x E [xi1, xi1), with the abbreviation 

x = i-1 
h. 

hii 

which is used from here on throughout the paper. The quantities mi = p'(xi) = 

p'+1(xi) are free parameters. Then the function s: [a, b- R, given by 

(2.5) s(x) = pi (x) (x E [xi-1, xi]), 

is a spline from S(k, q, 7r). Moreover, for every choice of parameters mi the spline s 
solves the interpolation problem (2.1). We note that in particular s E Cri in a 
neighborhood of xi. Hence the deficiency of s at the knot xi can be controlled with 
the help of ui, u1+1. 

3. Convex Interpolation. In general, for a convex data set an interpolating spline of 
the form (2.4), (2.5) is not convex. There arises the question if there exist parameters 
mi such that the corresponding interpolating spline s is also a solution of (2.2). A 
partial answer to this question is given by the following theorem (see [12]). 

THEOREM 3.1. Let {(xi, fi), i = 0,..., n } be a convex data set. Then an interpolat- 
ing spline s of the form (2.4), (2.5) is convex on the interval [a, b] if and only if the 
parameters m 0, mi1, .. ., mn solve the linear system of inequalities 

(3.1) (k - ui + 1)mi-l + (ui - 1)mi < 
kT1 i 

(3.1) (k - ui)mi1 + ui, m, > kTj ( 192,..., n). 

If we can find a solution of (3.1) then, by (2.4), (2.5), a solution of (I) is given. On 
the other hand, there exist convex (even strictly convex) data sets for which the 
system (3.1) is unsolvable. This is a consequence of the following theorem, given by 
Passow and Roulier [151: 

THEOREM 3.2. For any integer k > 1 there exists a set of five data points {(xi, fi), 
i = O,..., 4} with T < T2 < T3 < T4, for which no spline s E S(k, 1, -), -#: x0 < x1 
< X2 < X3 < x4satisfies s(xi) = fi (i = O,... ., 4) with s convex on [x0, X4]. 

4. An Algorithm. In this section we present an algorithm for solving (3.1). 
Moreover, necessary and sufficient conditions for the solvability of this system are 
derived. In [6] the author described an algorithm for solving (3.1) in the case k = 3. 
The extension of the method to the general system (3.1) was realized in an 
unpublished paper. Starting from this, Schmidt and Hess [17] developed a more 
effective variant. The algorithm given here is the symmetric variant of it. For 
simplification, in view of (3.1), we use the following abbreviations: 

ai = (k - ui + 1)/k, Pi = (ui - 1)/k, yi = (k - ui)/k, Si = ui/k. 
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ALGORITHM 

Step 1 (Backward-step): 
Put An = tT. and B. = (tT. -a.T. 

For i = n, n-1,... 1 do 
If Tj > Bi then stop else 

put Ai-, = (Ti - aiBi)/yi and Bi-, = min{ri, (Ti - fiAi)/la} 
Step 2 (Forward-step): 

Choose mo E [mwo, ]ol with mo = AO and fiio = Bo. 
For i = 1,2, ..., n do 

Choose mi E [ in, mi] with 
mi = max{ Ai, (rT - yim i-)/a8i} and 

mi = min{ Bi, (i - aim i- )/fi}.- 

Before we make some remarks on the Algorithm let us formulate the following 
result, which can be proved by considerations analogous to those in [17]. 

THEOREM 4.1. Let the data set {(xi, fi), i = 0,1,..., n } be convex. Then the 
following statements are equivalent: 

(i) The system of inequalities (3.1) is solvable. 
(ii) The Algorithm is well-defined and yields a solution of (3.1). 
(iii) The inequalities Ti < Bi are valid for i = 1, 2 .. ., n. 

Remarks. 1. The above Algorithm makes strong use of the special structure of the 
system (3.1). 

2. The Algorithm is of a global nature in the sense that a change of data points or 
an extension of the data set has influence on all intervals of admissible parameters in 
general. 

3. The fact that we have a whole interval [mi, mi] of admissible parameters mi can 
be used to look for " visually pleasant" convex spline interpolants (see [2]). 

4. It is easy to show that with the help of the Algorithm all solutions of (3.1) can 
be found. 

5. The statement (iii) in Theorem 4.1 can be replaced by "(iii') The inequalities 
Ti < Bi are valid for i = 1, 2,.. ., n - 3." This is possible because the remaining 
inequalities always hold. 

5. Special Cases. The first special case is embodied in the following theorem. 

THEOREM 5.1. Let the convex data set {(xi, fi), i = 0, 1, . . ., n } be given such that 

(5.1) 0 j = 1,2, ... n - 2. 

Then there exists a solution of (3.1) and, consequently, the interpolation problem (I) 
possesses a solution. 

Proof. Because of Theorem 4.1 it is sufficient to verify that Tj < Bi (i = 1, 2, ..., 
n - 3). This follows from the next lemma, which completes the proof. Q.E.D. 

LEMMA 5.2. With the assumption of Theorem 5.1 we have 

(5.2) B11==T, i=1,2,...,n. 
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Proof. For i = n, n - 1 the relation (5.2) is valid. Let us suppose that (5.2) holds 
for i = n, n - 1,...,j + 1. Then Bj> rj and Ai-,, Bjj are well-defined. Because 
of 

~~8- B 
Tj+A = 

- +1 +1 
_j+1 

- 
8j+lTj+2 

j Yj+ 1 'Yj+ 

we obtain, with (5.1), that 

ij 
- 

i _ j Pi -(Tj-Aj) 

(T( jl( +2 Tj+) -(Tj+l -Tj)) 
>1 0 

Thus B = j. Q.E.D. 
In the case of (5.1) the backward-step of the Algorithm can be omitted and we 

get a 

REDUCED ALGORITHM. 

For i = 1, 2, . . ., n choose m e [mi, ni] with 

T-81T2 

Yl 

rnj=maxf Tj+1 -j+1Tj+2 TYjMj-11 

mj mx-Yi+i ' aj j (= 1,2,... ,n - 2) 

= m {Tj j-ajmj/1 

_ Tn-1 -Yn-lMn-1 
mn-1 Sn-1 

m I = min(T Tn-1 an-lMn-2 

-Tn Yn mn-1 _ _Tn an M n-1 Mn = m =. m n 'Sn n 
fin 

Remark. If we put k = 3 and, hence, ui = 2 (i = 1, 2,..., n) the above Reduced 
Algorithm is equivalent to Algorithm 2 presented in [6]. From Theorem 5.1 we can 
derive some interesting conclusions. We first assume that the degree k is fixed and 
the smoothness q, q > 1, is not of importance, i.e., the parameters ui can be chosen 
arbitrarily between 1 and k. Then we get 

COROLLARY 5.3. Let the given data set be strictly convex. If parameters u1, 
(i = 2, 3, ..., n - 1), can be found with 

(5.3) k(;+1 _ + u1j <k (j= 1,2,...,n -2), 

then the interpolation problem (I) possesses a solution. 

This fact is clear because the left-hand inequality of (5.3) is equivalent to (5.1). 
The remaining quantities, namely u, and un, have no influence on the result of 
Corollary 5.3. Therefore, they can be chosen arbitrarily with 1 < u, un < k. 
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If for fixed k the problem (I) has no solution then there arises the question: Does 
there exist a solution of (I) for splines of degree larger than k? An answer to this 
question was given implicitly in [5]. We obtain a positive answer with the help of 
(5.3) in the form of a lower bound for k. Namely, if for given q E f 1, 2,..., 
[(k - 1)/2]) 

(5.) k(Tj+l 
- 

j) k - q (j =1,2,. . .. n -2), 

then we could take uj+ = k - q (j = 1,2,..., n - 2) as admissible values and, 
hence, a q-times continuously differentiable solution of (I) is guaranteed. From (5.4) 
we obtain (see also [17]): 

COROLLARY 5.4. Let the given data set be strictly convex. If the degree k of used 

splines is chosen such that 

(5.5) k>qq max j +2 
- 

i 
1,<j,<n-2 TJ+2 

- j+l1 

then there exists a solution of (I) in S(k, q, fr). 

Obviously, under the assumptions of Corollary 5.3 resp. 5.4, corresponding 
solutions can be found with the help of the Reduced Algorithm. Corollary 5.4 is an 
alternative to the negative result of Theorem 3.2 of Passow and Roulier [15], given 
there for fixed k. Finally, we point out the fact that under assumption (5.1) a 
solution of (3.1) can be obtained by solving a first-order linear difference equation. 

COROLLARY 5.5. For a given convex data set let (5.1) be valid. Then the solution of 

(5.6) Yimi-1 + Simi= Ti (i = 1,2,...,n) 

with mo = (T1 - 81r2)/Y2 is also a solution of (3.1). 

Proof. In view of (3.1) we have only to verify that the solution of (5.6) fulfills the 
inequalities 

aimi-1 + flimii < Ti (i=1, 2, ... ., n). 

From (5.6) we obtain after easy calculations 

aimi-1 + Mlimi Ti + ky(Ti mi). k-y1 

Thus we have to show that Ti - mi < 0 (i = 1, 2, .. ., n). We prove this by induction. 
For i = 1, 2 the relation is obviously fulfilled. For j > 3 we get 

Tj -Ym - y 
__ m = T 1 Tj-1 - 210lTj -Yj-2Mj-2} 

< ,5,5 {ga T-1 8-lTj- 'Yj-lTj-21 < ?, 

because of (5.1). Q.E.D. 
The second special case deals with monotone increasing and convex spline 

interpolation. Given a monotone increasing and convex data set, i.e., 0< T1 < 2 < 

*-- < Twn, then we obtain with the Algorithm nonnegative solutions of (3.1) if the 
conditions (iii) of Theorem 4.1 and Bo > 0 hold and if in Step 2 of the Algorithm, 
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mO is substituted by 

MO = max AO, O} . 

If even (5.1) is valid, then the Reduced Algorithm always produces a nonnegative 
solution by substituting mo by 

Tm( 81T2 o} 
Thus we obtain a monotone increasing and convex solution of (I). 

6. Error Estimation. Let f E C[a, b] be a given function and let fi = f(xi) 
(i = O 1,.. ., n). We denote by I f II the maximum norm and by w(f, 8) the modulus 
of continuity of f on the interval [a, b]. Further, let 

7=min{k - ulqUn-1. 

THEOREM 6.1. Let f E Cl[a, b] be given such that for the considered data set the 
system (3.1) is solvable. Then the error between f and an interpolation spline s of the 
form (2.4), (2.5) can be estimated by 

(6.1) IVI")-sl")11|< D,,w(f',h)*hl-" for I=0O,1, 

where 

4k-c 4k(k -2) 2 * Do = D, = 4 + , + 1) 

Proof. With the defining equations of pj i we first obtain 

s'(x) = mi1 + aka. I (k-u-1(1 _ +)up-2 ) d, X G [Xi-,,Xj, 

where 

(6.2) Xi = (k - ui)mil +(ui - 1)mi -(k -) 

(6.3) pi = k k ({kT -(k - ui + 1)mi-l -(Ui - 1)mi}. 

From the inequalities 

ki -(k - ui)m1 < k -(k - ui + 1)Mii1 
U. Ui- 

it is easy to verify that 

(6.4) k-ui (i Ti) < 6 

(6.5) k < Pi < a (Ti-Mi-J. U. 

Therefore, in view of m i 1 < Tj < mi, we get after some calculations 

k k(k-1) 
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An analysis of IXi I leads to 

s'(x) - f '(x) I mim1 - f'(X) I + 2k(k - 
u-) - (Ti-mi1) +( mi-Jl 

Ui(ui -1)*r 

Now, because of 

kT1 12m~rr~nkT -(k-un,+ 1)Tn 
(6.6) k ul 6 m1 < T11 Tn < n+ 

and mi-1 < Tj < m1 (i = 1, 2,..., n), the following estimates are valid: 

I UI (T2 -T1) + -T, J "(X )I 
k - ul h)ii1 

Ti-1-f -(x) < 2 - w(f',h) if i E {2,3,...,n}, 

Ti - mi-1 <( krk - uu 2 k f f 

(Tj- Ti-1) < 2 - (f', h) if iE- {2,3,..., n}, 

t kl- ujT2< 2k 
w(f',h) if i = 1, 

)2 k - u k - u 
m -mi-1 < Tj+ - Ti-1 < 3 - w(f', h) if i E- {2,3, ...,n-1}, 

kn-_(k_-_Un + _ )n- 2k 
1un-i- -T-1 < w (f ,h) flf n. 

Finally, the bounds 

max( k+ul 2 < 2k , max 2k _u 3 2k 2k 

max -4k 4k(k - u) 
kk=2,3...,n) ( ) 

give (6.1) for i' = 1. The estimate (6.1) for ii = 0 can be obtained from this by 
standard techniques. Q.E.D. 

THEOREM 6.2. Let f E C[a, b] be given such that for the considered data set the 
system (3.1) is solvable. With the abbreviation 

9(7T) = max{hi/hj, li-il = 1) 

we obtain for a convex interpolation spline of the form (2.4), (2.5) the estimate 

(6.7) lJV- sjj Co - (f@h) 

with CO = 2{k + (k-#)Qnj/q} + 1. 

Proof. By virtue of (2.4), (2.5) we get 

Is(x) -f(x) I < Ifj- -f(x) l + Imihi + ImIh1, x e [xi-, xj]. 
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Further, from (6.6) there follows 

Imax(iri Ikr- uiT2I)h ( k + k u1 h ).w(fh) if i = 1, 

I mi1Ihi h 

tmaxf ITi-1|Ti I Ihi < max l, h ) W(f, h) if i E= {2, ... n} , 

maxf ITjl Tj+j I Ihi 6 maxl 1h )W( f, h) if i E= f l. .., n -1} 

m i lh i < maX( lTn, 
Jk 

s n (h n+l T 

< (k + k nj 1.hhfn)w(fh), if i = n. 

This leads to (6.7). Q.E.D. 
In the case of monotone increasing and convex spline interpolation the depen- 

dence of CO on Q(1T) can be removed. 

THEOREM 6.3. Let f E C[a, b] be given such that for the corresponding data set a 
monotone increasing and convex interpolation spline of the form (2.4), (2.5) can be 
found. Then the error between f and such a spline s is bounded by 

IV - sllc 11< ,-(f ,h) 

with C1 = max{7/2, 1 + 2(k - 1)14}. 

Proof. Starting from the representation 

s(x) = fi-1 + mi-1hit + aku. f * k-u,1(l -)uj-2(Xi + pi) d dq 

for x E [xi1, xi1], with Xi, Pi from (6.2), (6.3), and using the identity 

for arbitrary integers ,i, v (see [15]), we obtain after straightforward calculation 

Is(x) -f(x) I < Ifi-1 - f(x) I + mi1hi + IXihi + k _ u ph 

Finally, (6.4), (6.5) and mi1> 0 yield 

k 
Is(x) - f (x) I < w(f, h) +I Xihi + - (f, h) u1 

< 1 + +max ui ] W(f, h) Cl (f ,h). Q.E.D. 

Remark. With Theorem 6.1 we have obtained a better error estimate than that 
given by Neuman in [12], [13] for special cases. 
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